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1 Abstract8

We present a weighting strategy for use with the CMIP5 multi-model archive9

in the 4th National Climate Assessment which considers both skill in the cli-10

matological performance of models over North America as well as the inter-11

dependency of models arising from common parameterizations or tuning prac-12

tises. The method exploits information relating to the climatological mean state13

of a number of projection-relevant variables as well as metrics representing long14

term statistics of weather extremes. The weights, once computed can be used to15

simply compute weighted means and significance information from an ensemble16

containing multiple initial condition members from co-dependent models of vary-17

ing skill. Two parameters in the algorithm determine the degree to which model18

climatological skill and model uniqueness are rewarded; these parameters are19

explored and final values are defended with respect to the Assessment. The in-20

fluence of model weighting on projected temperature and precipitation changes21

is found to be moderate, partly due to a compensating effect between model22

skill and uniqueness. However, more agressive skill weighting and weighting by23

targeted metrics is found to have a more significant effect on inferred ensemble24

confidence in future patterns of change for a given projection.25

∗bsander@ucar.edu
†mfwehner@lbl.gov
‡reto.knutti@env.ethz.ch

1

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-285, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



2 Introduction26

The CMIP5 archive [1] is the most comprehensive collection of climate simula-27

tions which has been produced to date. The archive contains simulations from28

over 25 institutions, some of which submit multiple models - bringing the total29

number of models in the archive to potentially more than 100 (although many30

of these are minor variants, and not all models conduct all simulations).31

Using this dataset to produce assessments of future climate change involves32

a number of conceptual challenges. Previous assessments of both the IPCC [2]33

and the National Climate Assessment in the United States [3] have considered34

the archive to represent model democracy [4], in that simulations of the future35

from each model are considered to be equally likely, without accounting for any36

variation in model skill or for the fact that some models are very similar to37

other models in the archive, bringing into question the assumption that their38

simulations can be considered to be independent samples of future behavior.39

However, these underlying assumptions have been challenged by a number40

of studies over recent years. Various studies [5, 6, 7, 8], have pointed out that41

the ensemble contains demonstrable inter-dependence - where similarities in the42

spatial biases in model simulations correspond well to expected relationships43

which one might expect from models from the same institution, or those sharing44

significant amounts of code. As such, the number of effective models in the45

archive is likely to be significantly smaller than the number of simulations [9,46

10, 7]. The weights should also be representative of the question at hand: skill47

is not a property of the model per se, but indicative of the ability of a model to48

project a certain change [11].49

In addition, the models that are present in the archive are not equally skillful50

in representing the present day or past climate [12]. However, it is notably51

difficult to produce an overall ranking of model performance, given that the52

conclusion is conditional on both the region and metrics considered [13].53

Some studies have suggested methodologies which might be able to ad-54

dress some of these complexities: Bishop et al (2013) [14] proposed a method55

which produced a set of statistically independent meta models from the origi-56

nal archive, while Sanderson (2015) [7] proposed a method for subsampling the57

original archive, keeping models which were maximally independent and skillful58

in reproducing past climate.59

In the following study, we present a weighting scheme for use in the 4th60

National Climate Assessment for the United States. The requirements for this61

application are somewhat unique - in that a method from the literature cannot62

be simply taken ‘out of the box’ from an existing study. Clearly there is a63

geographical focus: the report itself is focussed on future climate change in the64

United States, so there is some logic in considering climatological skill which65

is most relevant to this region. In addition, traceability and simplicity are66

paramount for this application - so the use of statistical meta-models or narrow67

subsets of the original archive would not be desirable.68

Our methodology is based on the concepts outlined by Sanderson (2015) [7],69

but instead of deriving a subset, the objective is to produce a single set of model70
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weights which can be used to combine projections into a weighted mean result,71

with significance estimates which also treat the weighting appropriately.72

The method, ideally, would seek to have two fundamental characteristics.73

First, if a duplicate of one ensemble member is added to the archive, the re-74

sulting mean and significance estimate for future change computed from the75

ensemble should change as little as possible. Secondly, if a demonstrably poor76

(for the metrics considered) model is added to the archive, the resulting mean77

and significance estimates should also change as little as possible.78

3 Method79

3.1 Data pre-processing80

Our analysis differs in a number of ways from that originally proposed by Sander-81

son (2015) [7]82

• The analysis region contains on the counterterminous United States (CONUS)83

and most of Canada, constrained by available high resolution observations84

of daily surface air temperature and precipitation.85

• Inter-model distances are computed as simple root mean square differences86

here, in contrast to the multi-variate PCA used by Sanderson (2015) [7].87

• The weights for skill and independence are the final product in this analy-88

sis, whereas they only inform the subset choice in the study by Sanderson89

(2015) [7].90

We utilize data for a number of mean state fields, and a number of fields which91

represent extreme behaviour - these are listed in Table 1. All fields are masked92

to only include information from the combined CONUS/Canada region. We93

also consider a selection of models from the CMIP5 archive, listed in Table 2.94

3.2 Inter-model distance matrix95

For each variable, a distance matrix δv is computed between each pair of N96

total models and between each model and the observed field (such that the97

observations are treated as an N + 1th model) . Distances are evaluated as the98

area-weighted root mean square difference over the domain. The matrix is then99

normalized by the mean inter-model distance, such that for each field in Table 1,100

there is a (nmodel + 1) by(nmodel + 1) matrix representing the pairwise distance101

between each model (and the observations).102

These normalized matrices are then linearly combined, with each line in103

Table 1 taking equal weight,104

δ =
∑

v

δv, (1)

to produce the multi-variate distance matrix δ illustrated in Figure 1.105
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Figure 1: A graphical representation of the inter-model distance matrix for
CMIP5 and a set of observed values. Each row and column represents a single
climate model (or observation). All scores are aggregated over seasons (indi-
vidual seasons are not shown). Each box represents a pair-wise distance, where
warm colors indicate a greater distance. Distances are measured as a fraction
of the mean inter-model distance in the CMIP5 ensemble.
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Table 1: Observational Datasets used as observations.
Field Description Source Reference
TS Surface Temperature (seasonal) Livneh, Hutchinson [15, 15]
PR Mean Precipitation (seasonal) Livneh, Hutchinson [15, 15]
RSUT TOA Shortwave Flux (seasonal) CERES-EBAF [16]
RLUT TOA Longwave Flux (seasonal) CERES-EBAF [16]
T Vertical Temperature Profile (seasonal) AIRS* [17]
RH Vertical Humidity Profile (seasonal) AIRS [17]
PSL Surface Pressure (seasonal) ERA-40 [18]
Tnn Coldest Night Livneh, Hutchinson [15, 15]
Txn Coldest Day Livneh, Hutchinson [15, 15]
Tnx Warmest Night Livneh, Hutchinson [15, 15]
Txx Warmest day Livneh, Hutchinson [15, 15]
rx5day seasonal max. 5-day total precip. Livneh, Hutchinson [15, 15]

3.3 Model Skill106

The RMSE between observations and each model can be used to produce an107

overall ranking for model simulations of the CONUS/Canada climate (which108

is illustrated by the overall model-observation distance in Figure 1). Figure 2109

shows how this metric is influenced by different component variables.110

3.4 Independence weights111

The inter-model distance matrix is also computed from the inter-model distance112

matrix δ. For a pair of models i and j, we first compute a similarity score S(δij)113

from their pairwise distance δij :114

S(δij) = e
−
(
δij
Du

)2

, (2)

where Du is the radius of similarity [7], which is a free parameter which115

determines the distance scale over which models should be considered similar116

(and thus down-weighted for co-dependence). We show below how an appro-117

priate value can be chosen given prior knowledge about models with known118

dependencies in the archive.119

In limits, two identical models will produce a value of S(δij) of 1, and120

S(δij) → 0 as δij → ∞. A given model i’s effective repetition Ru(i) can be121

calculated by summing the models close by:122

Ru(i) = 1 +
m∑

j 6=i

S(δij). (3)

Finally, we calculate the independence weight for model i as the inverse of123

its repetition:124
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Figure 2: A graphical representation of the model-observation distance matrix
for a number of variables, illustrating how different biases combine to produce
the overall model-observation distance in Figure 1. Each column represents a
single climate model, and rows represent the different observation types in Table
1. Distances along each row are normalized, such that the mean model has a
distance of 1 to the observations. CMIP5 Models are sorted by their combined
skill as shown in the bottom row.

wu(i) = (Ru(i))−1
. (4)

Figure 3 shows the dependence of the independence weights on Du for a125

number of different models. Du is sampled by considering the distribution of126

inter-model distances δ, and sampling by percentiles σu the smallest inter-model127

distances in the archive.128

As points of reference, we consider some models from the archive known129

to have no obvious duplicates (HadCM3 and INMCM), which should not be130

significantly down-weighted by the method. We also consider some models131

where there numerous known closely related variants submitted from MIROC,132

MPI and GISS. It is desirable to choose a value of Du which produces a weight133

of approximately 1/n where n is the number of variants submitted.134

Hence, by inspection of Figure 3, we take Du as 0.48 times the distance135

between the best performing model and observations in the CMIP5 archive,136

which produces approximately the desired weighting characteristics in these137

cases where we have a reasonable expectation of what the true model replication138

is in the archive.139

The methodology described above assumes each model has submitted only140

one simulation to the archive, but the method is robust to the inclusion of141

multiple initial condition members from each model. If Du is chosen such that142
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Figure 3: Model independence weights (wu) as a function of the radius of in-
terdependence Du, plotted for a number of models and groups of models in the
CMIP5 archive. The vertical line shows the value used in NCA4.

structurally similar ensemble members, then wu will appropriately allocate a143

fractional weight to each initial condition ensemble member. In the case of144

NCA4, extreme value statistics were only available for a single instance of each145

model, hence initial condition ensembles were not considered.146

3.5 Skill weights147

The RMSE distances between each model and the observations are used to148

calculate skill weights for the ensemble. The skill weights represent the clima-149

tological skill of each model in simulating the CONUS/Canada climate, both in150

terms of mean climatology and extreme statistics. The skill weighting wq(i) for151

model i is calculated as in [7]:152

wq(i) = e
−
(
δ20c
i(obs)
Dq

)2

, (5)

where δ20c
i(obs) is the sum of the normalized RMSE differences over all variables,153

between each model and the observations, and Dq is the radius of model quality154

[7] which determines the degree to which models with a poor climatological155

simulation should be downweighted. As such, a very small value of Dq will156

allocate a large fraction of weight to the single best performing model in the157

archive (as assessed by the climatological skill). Equally, as Dq → ∞, the158

multi-model average will tend to the non skill-weighted solution.159

An overall weight is then computed as the product of the skill weight and160

the independence weight.161
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w(i) = wu(i)wq(i) (6)

We determine an appropriate value for Dq by considering both the skill of the162

weighted average in reproducing observations, and also by conducting perfect163

model simulations with the CMIP5 ensemble. In Figure 4(a), we show that the164

use of relatively strong weighting (where the Dq is 50 percent of the distance165

between the best performing model and the observations) produces the weighted166

climatological average with the lowest error.167

However, a more skillful representation of the present-day state does not168

necessarily translate to a more skillful projection in the future. In order to assess169

whether our metrics improve the skill of future projections at all, we consider170

a perfect model test where a single model is withheld from the ensemble and171

then treated as truth.172

However, such a test can be over-confident because when some models are173

treated as truth, there remain close relatives of that model in the archive which174

would be given a high skill weight and would inflate the apparent skill of the175

metric in predicting future climate evolution. To partly address this, we conduct176

our perfect model study with a subset of the CMIP5 archive which excludes177

obvious near relatives of the chosen ‘truth’ model. We achieve this by excluding178

any model which lies closer to the ‘truth’ model than the distance between the179

best performing model and the observations in the inter-model distance matrix180

δ. The excluded model pairs for the perfect model test are illustrated in Figure181

5.182

Once the obvious duplicates have been removed, we can test the ability of183

the chosen multivariate climatological metrics to increase skill in the simulation184

of the out of sample model’s future. We do this in two ways: in the first185

case, we consider the RMSE of the weighted multi-model mean projection of186

each out of sample model’s projection of annual mean gridded temperature and187

precipitation change at the end of the 21st century under RCP8.5. This is188

expressed as a fraction of the RMSE one would obtain with a simple mean of189

the remaining models (again, excluding the obvious duplicates). This process is190

repeated for each model in the archive, after which the results are averages and191

plotted in Figure 4(b), where the optimum value of Dq for the reproduction of192

future temperature and precipitation change is approximately 70 percent of the193

distance between the best performing model and observations, for which there is194

a 9-10 percent reduction in RMSE compared the unweighted case. This suggests195

that in the perfect model study, some skill weighting based on climatological196

performance can improve the mean projection of future change.197

Finally, we test whether skill-weighting the ensemble increases the chances198

of the truth lying outside of the distribution of projections suggested by the199

archive. For Figure 4(c), we consider the ensemble projected values for future200

temperature and precipitation at each gridcell, using the combined skill and201

independence weight (with the perfect model treated as observations) to define202

a likelihood distribution for future change. We show the average fraction of203
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Figure 4: Subplots are functions of Dq, the radius of model quality (all figures
take a value of Du corresponding to the 1.5th percentile of the inter-model dis-
tance distribution). Subplot (a) shows the RMSE of the weighted multi-model
mean compared with observations, relative to the non skill-weighted multi-model
mean. Subplot (b) shows the average RMSE of future annual mean gridded tem-
perature change projections in 2080-2100 (relative to 1980-2000) under RCP8.5
for an out-of sample model taken to represent truth (with obvious replicates re-
moved from the ensemble). Subplot (c) shows the average fraction of grid-cells
for which the out-of sample ‘perfect model’ projections lie below the 10th or
above the 90th percentile of the inferred weighted distribution.
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Figure 5: A graphical representation of models which are excluded from the
remaining ensemble in the perfect model test when each model in turn is treated
as truth. Cells in black represent models which are closer to each other than
the best performing model in the archive is to observations.
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Figure 6: Model skill and independence weights for the CMIP-5 archive evalu-
ated over the CONUS/Canada domain. Contours show the overall weighting,
which is the product of the two individual weights.

grid-cells where the chosen perfect model projected value for temperature or204

precipitation change lies above the 90th or below the 10th percentile of that205

distribution. If the likelihood distribution is representative, one would expect206

20 percent chance that the perfect model lies in this range. However, if this207

value increases, it indicates that the weighting is too strong and the weighting208

is producing an under-dispersive distribution.209

Figure 4(c) shows that for values of Dq of less than 80 percent of the distance210

between the best performing model and observations, there is some increased211

risk of the ensemble being under-dispersive. As such, this is a justifiable value212

to retain - there is still a demonstrable increase in the out-of-sample skill of the213

future projection in the perfect model tests, with a minimal risk of an under-214

dispersive distribution.215

Using the values of Dq and Du defended in this section, we illustrate skill,216

independence and combined weights for the CMIP5 archive in Figure 6 and in217

Table 3.218
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Uniqueness weight Skill Weight Combined
ACCESS1-0 0.60 1.69 1.02
ACCESS1-3 0.78 1.40 1.09
BNU-ESM 0.88 0.77 0.68
CCSM4 0.43 1.57 0.68
CESM1-BGC 0.44 1.46 0.64
CESM1-CAM5 0.72 1.80 1.30
CESM1-FASTCHEM 0.76 0.50 0.38
CMCC-CESM 0.98 0.36 0.35
CMCC-CM 0.89 1.21 1.07
CMCC-CMS 0.59 1.23 0.73
CNRM-CM5 0.94 1.08 1.01
CSIRO-Mk3-6-0 0.95 0.77 0.74
CanESM2 0.97 0.65 0.63
FGOALS-g2 0.97 0.39 0.38
GFDL-CM3 0.81 1.18 0.95
GFDL-ESM2G 0.74 0.59 0.44
GFDL-ESM2M 0.72 0.60 0.43
GISS-E2-H-p1 0.38 0.74 0.28
GISS-E2-H-p2 0.38 0.69 0.26
GISS-E2-R-p1 0.38 0.97 0.37
GISS-E2-R-p2 0.37 0.89 0.33
HadCM3 0.98 0.89 0.87
HadGEM2-AO 0.52 1.19 0.62
HadGEM2-CC 0.50 1.21 0.60
HadGEM2-ES 0.43 1.40 0.61
IPSL-CM5A-LR 0.79 0.92 0.72
IPSL-CM5A-MR 0.83 0.99 0.82
IPSL-CM5B-LR 0.92 0.63 0.58
MIROC-ESM 0.54 0.28 0.15
MIROC-ESM-CHEM 0.54 0.32 0.17
MIROC4h 0.97 0.73 0.71
MIROC5 0.89 1.24 1.11
MPI-ESM-LR 0.35 1.38 0.49
MPI-ESM-MR 0.38 1.37 0.52
MPI-ESM-P 0.36 1.54 0.56
MRI-CGCM3 0.51 1.35 0.68
MRI-ESM1 0.51 1.31 0.67
NorESM1-M 0.83 1.06 0.88
bcc-csm1-1 0.88 0.62 0.55
bcc-csm1-1-m 0.90 0.89 0.80
inmcm4 0.95 1.13 1.08

Table 3: Uniqueness, Skill and Combined weights for CMIP5 for the
CONUS/Canada domain
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4 Gridded application219

Once derived, the skill and independence weights can be used to to produce220

weighted mean estimates of future change, as well as confidence estimates for221

those projections. To illustrate this, we modify the significance methodology222

from the 5th Assessment Report of the IPCC [2], such that:223

• Stippling - large changes where the weighted multimodel average change is224

greater than double the standard deviation of the 20 year mean from con-225

trol simulations runs and 90 percent of the weight corresponds to changes226

of the same sign.227

• Hatching - No significant change where the weighted multimodel average228

change is less than the standard deviation of the 20 year means from229

control simulations runs.230

• Blanked out - Inconclusive where the weighted multimodel average change231

is greater than double the standard deviation of the 20 year mean from232

control runs and less than 90 percent of the weight corresponds to changes233

of the same sign.234

Following the protocol of [2], the standard deviation of the 20 year mean235

from control simulations is derived using the ‘picontrol’ simulations in CMIP5.236

We consider all simulations with a length of 500 years or longer, and discard the237

first 100 years. The remaining time period is broken into consecutive 20 year238

periods, and the estimate of control variability for each model is taken as the239

standard deviation of the 20 year periods. This process is repeated for all models240

with an appropriate simulation. Finally, the standard deviations are averaged241

over all models to produce the final estimate for the standard deviation of the242

20 year mean from the control simulations.243

In order to adapt this methodology to a weighted ensemble, we need to apply244

the weights both to the mean estimate and the significance estimates.245

To calculate the weighted average, each model is associated with a weight246

(e.g. from table 3). The weights must be normalized, and the weighted average247

p at each gridcell is:248

p = 1/n
n∑

1

w(i)p(i) (7)

where n is the number of models, w(i) is the weight of model i and p(i) is the249

projected value from model i.250

Therefore, the significance test is very similar to the IPCC case: if the251

weighted average exceeds double the control standard deviation, it is a signifi-252

cant change and if it is less than the standard deviation it is not significant.253

Sign agreement is slightly modified from the IPCC case - rather than as-254

sessing the number of models exhibiting the same sign of change, we consider255
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the fraction of the weight exhibiting the same sign of change, f . This can be256

expressed as:257

f = |1/n
n∑

1

w(i)sign(p(i))|, (8)

for any given set of projections p.258

We illustrate the application of this method to future projections of temper-259

ature and precipitation change under RCP8.5 in Figures 7 and 8 which show260

the mean projected quantities as well as the 10th and 90th percentiles of the261

weighted distribution of change at the gridcell level. In both cases, the weighting262

has only a subtle effect on the mean projection, but serves to slightly constrain263

the range of response at a given gridcell. In Section 5, we discuss how more264

aggressive or targeted weighting can have a greater potential effect.265

5 Sensitivity Studies266

The parameter choices for Dq and Du utilized in Section 3, as well as the267

choice of metrics and the domain were considered appropriate for the specific268

application of the US National Assessment, where it was desirable to have a269

single set of weights used for a number of applications. However, in a more270

general sense, we consider here how different choices may impact the results of271

weighted analyses, and how the researcher should consider weighting in more272

targeted (or more global) applications. We briefly consider how the sensitivities273

of the method to different choices.274

5.1 Spatial Domain275

In the case of NCA4, the strategy was to produce multi-variate metrics which276

were specific to CONUS/Canada. However, there is an argument that there are277

aspects of non-local climatology which would ultimately impact the domain of278

interest (through their influence on global climate sensitivity, for example).279

In Figure 9(a-e), we consider the RMSE metrics for both the US and the280

entire global domain. In this comparison, it is shown that there is a rela-281

tively poor correlation between model skill evaluated over CONUS/Canada and282

globally for any individual metric, however, when individual metrics are com-283

bined into a multivariate climate (the approach used in Section 3), there is a284

correlation of 0.89 between the regional and local metrics. As such, the final285

weighting for NCA4 would not be highly sensitive to using global rather than286

CONUS/Canada metrics, but a study using a more restrictive set of variables287

to assess model quality could potentially be sensitive to domain choice.288

5.2 Skill weighting strength289

The strength of the skill weighting corresponds to the parameter Ds in Section290

3. For the purpose of NCA4, a conservative value was chosen to minimize the291

potential for overconfidence in future projections from the weighted ensemble.292
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Figure 7: Projections of mean temperature change over CONUS/Canada in
2080-2100, relative to 1980-2000 under RCP8.5. (a-c) show the simple un-
weighted CMIP5 multi-model average, 90th percentile of warming and 10th
percentile of warming using the significance methodology from [2], (d-f) show
the weighted results as outlined in section 4 for models weighted by uniqueness
only and (g-i) show weighted results for models weighted by both uniqueness
and skill.
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Figure 8: As for Figure 7, but for future mean precipitation change under
RCP8.5.
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Figure 9: A series of plots showing Root Mean Square Errors evaluated over
the CONUS/Canada domain as a function of errors assessed over the global
domain. Each point corresponds to a single model in the CMIP5 archive. Plots
are shown for some individual fields (a-e) and (f) RMSE averaged over all 12
available fields listed in Figure 2.
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This resulted in only very subtle changes in gridded temperature and precipita-293

tion projections for the future (although there are some noticeable differences294

in the uncertainty range, see Figures 7 and 8).295

However, here we consider the impact on temperature projections if a more296

aggressive weighting strategy were used. In Figure 10(a), we show the sensitivity297

of global mean temperature change under RCP8.5 as a function of the skill298

radius. The default value of Ds = 0.8 produces a small decrease in projected299

2080-2100 global mean temperature increase (a warming of 3.7K above 1980-300

2000 levels, compared to the non-skill weighted case of 3.9K, Figure 10(d)).301

As Ds → 0, the fraction of the percent of the models associated with 90302

percent of the weight decreases, and more weight is placed upon the models303

with higher combined skill scores in Figure 2. If a value of Ds = 0.4 is used, 90304

percent of the model weight is allocated to just 40 percent of models, and the305

projected warming is decreased further to 3.45K (Figure 10(c)). However, if Ds306

is reduced further to 0.1, such that 90 percent of weight is placed on only the307

top 5 percent of models (which corresponds to only 2 models: CESM1-CAM5308

and ACCESS1.0), the weighted warming estimate is higher than the unweighted309

case at 4.1K (Figure 10(b)).310

Hence, we find that although a the skill weighting as used in NCA4 has only311

a subtle effect on projected temperatures compared to the unweighted case,312

there is a demonstrable effect when stronger weights are utilized, but there313

is an increased risk of the weighted ensemble being underdispersive (Figure314

4(c)). For very aggressive weighting, projections differ significantly from the315

unweighted case but the resulting projection is effectively governed by only the316

best performing few models, such agressive weighting in the perfect model test317

was found to result in a less skillful projection (Figure 4(b)).318

5.3 Univariate weighting319

The requirements for NCA4 were such that a single set of weights should be320

used for the entire report. However, for some application it might be desirable321

to taylor a set of weights to optimally represent a particular process or projec-322

tion. Here, we consider how using weights assessed on precipitation climatology323

alone could change the result of the projection. The precipitation weighted case324

is formulated identically to the multivariate case but distances are computed us-325

ing RMS differences over the mean precipitation field (over the CONUS/Canada326

domain) only; the selection of Ds is set to 0.8 times the distance of the best per-327

forming model, and Du is taken the 1.5th percentile of the inter-model distance328

distribution as in the multivariate case.329

Figure 11(a) shows the distribution of changes in grid-level precipitation330

for the late 21st century under RCP8.5. It is notable that there is negligible331

difference between the mean precipitation changes in the unweighted case and332

the multi-variate weighted case, but in the precipitation only case there is an333

increase in regions exhibiting a large drying trend. This implies that a multi-334

variate metric has little constraint on precipitation change, but a more targeted335

metric could potentially identify regions which might exhibit extreme drying336
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Figure 10: A plot showing the effect of skill weighting strength on global tem-
perature projections. Subplot (a) shows global mean temperature increase for
2080-2100 under RCP8.5 as a function of the skill radius Ds (blue curve), as well
as the fraction of models with 90 percent of the allocated weight (red curve).
Subplots (b-d) show projected mean temperature maps for 3 cases of Ds=0.1
(b), 0.4 (c) and 0.8 (d).
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Figure 11: Distribution of changes in grid-level precipitation for the late 21st
century under RCP8.5. (a) shows the distribution for the mean (black) or
weighted by all variables (red solid) and weighted by precipitation only (red
dotted) projection of annual precipitation under RCP8.5. (b-d) show maps of
precipitation change in the style of Figure 8 for each weighting case.

in the future (just as each individual model exhibits some regions of extreme337

drying, but the lack of agreement amongst models on where those regions are338

causes the multi-model mean to lack any such behavior).339

We can illustrate this behavior by considering the spatial pattern of precip-340

itation change in the three cases, using unweighted(Figure 11(b)), multivariate341

weighted (Figure 11(c) as in Figure 8) or weighted using only the climatological342

precipitation only (Figure 11(d)). In the unweighted case, large fractions of the343

continental US show disagreement in the sign of precipitation change. Much of344

the midwest, northwest and southwest Canada for example are colored white345

indicating that models disagree on the sign of change, and drying in the south-346

west is not significant. A multivariate weighting makes little difference to this347

assessment; there is some indication that increased precipitation in the northern348

US is more likely - but changes still fail to be significant.349

A precipitation-based metric, however, seems to make a noticeable difference350

to the confidence associated with the weighted projection. There is now clear351
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and significant increases in precipitation in the northern part of the US, and352

significant increases in the northeast. There is also more clearly defined drying353

along the west coast and significant drying over the northern Amazon which354

was not evident in the unweighted or multivariate case.355

Hence, it seems that there is potential to constrain the spatial patterns of356

fields which show significant spatial heterogeneity across the multi-model archive357

by considering targeted metrics which might be more directly informative to rel-358

evant processes for that particular projection. One must be cautious because as359

noted in Section 5.1, because individual metrics are more susceptible to domain360

choice than the multivariate case, and so such a targeted constraint must be361

thoroughly investigated before application in a general assessment. However,362

this is a potential line of investigation which would be worthy of future study.363

6 Summary and Discussion364

This study has discussed a potential framework for weighting models in a struc-365

turally diverse ensemble of climate model projections, accounting for both model366

skill and independence. The parameters of the weighting in this case were opti-367

mized for using the CMIP5 ensemble in the fourth National Climate Assessment368

for the United States (NCA4); an application which required a weighting strat-369

egy targeted towards a particular region (CONUS/Canada), with a single set of370

weights which could be applied to a diverse range of projections.371

The solution proposed in this study adapted the logic first discussed in the372

context of model sub-selection in Sanderson et al (2015) [7], and applied it373

to a continuous weighting scheme. Weights were formulated on the basis of374

skill and uniqueness, where skill was assessed by considering the climatological375

bias averaged over a diverse set of variables, and uniqueness was assessed by376

constructing an inter-model distance matrix from the same set of variables and377

down-weighting models which lie in each others’ immediate vicinity.378

A single set of weights constructed for NCA4, using a multi-variate climato-379

logical skill metric and a limited domain size. Two parameters must be deter-380

mined for the weighting algorithm; a radius of model skill and one of similarity.381

The former was calibrated by considering a perfect model test where a single382

model is treated as truth and its historical simulation output is treated as ob-383

servations, immediate neighbors of the test model are removed from the archive384

and the remaining models are used to conduct tests which assess skill in re-385

constructing past and future model performance, as well as assessing the risk386

of producing an underdispersive ensemble which fails to encompass the per-387

fect future projection at a given grid point. Using these three tests, we take388

a conservative choice for model weighting which minimizes the risk of under-389

dispersion (i.e. the risk that the real world might lie outside the entire weighted390

distribution of projections at a given gridpoint).391

The similarity parameter is calculated in a qualitative fashion by considering392

known cases where models are known to be unique, or where there is a known set393

of closely related models. The parameter is adjusted such that the known-unique394
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models are given a weight of near unity, and the models with n near-identical395

versions are each given a weight of approximately 1/n.396

The requirements of a large assessment place constraints on the choice of397

parameters for this analysis. Logistical considerations imply that only one set398

of weights can be constructed, and the broad readership and high stakes of the399

assessment mean that any risk of under-dispersion of projected future climate is400

unacceptable for this application. These constraints dictate that only a moder-401

ate weighting of model skill is used, where 90 percent of the weight is allocated402

to 80 percent of models. This, unsurprisingly, creates only a modest change in403

mean projected results and only a small reduction in uncertainty. A stronger404

skill weighting is shown to have a more significant effect on projected changes,405

but with the risk of increased under-dispersion.406

In addition, there exists a weak trade-off between model skill and model407

uniqueness in the CMIP5 ensemble; models which are demonstrably high per-408

forming also tend to be the ones with the most near replicates in the archive. As409

such, there is a compensating effect of the skill and uniqueness components of410

the weighting algorithm, which tends to mute the effect of the overall weighting411

when compared to the unweighted case. In other words, the unweighted CMIP5412

ensemble is in fact already a skill weighted ensemble to some degree.413

However, although this tradeoff is evident in the CMIP5 archive, there is414

no guarantee that such a tradeoff is a justification for using an unweighted415

average in future versions of the CMIP archive. A single, highly replicated416

but climatologically poor model present in a future version of the archive could417

significantly bias the simple multi-model mean of a climatological projection. As418

such, it is desirable to have a known and tested weighting algorithm in place to419

produce robust projections in the case of highly replicated, or very poor models.420

Beyond the single set of weights produced for NCA4, the basic structure421

outlined in this study can be used to produce a more targeted weighting for422

a particular projection. Our provisional results suggest that targeted weights423

could potentially yield more confidence in projections if only a limited set of424

relevant projections are included, especially in fields where projections exhibit425

high degrees of structural diversity within the archive. This tailored weighting426

approach, however, presents risks which necessitate further study - our sensi-427

tivity studies suggest that multi-variate metrics are more robust to changes in428

spatial domain than targeted metrics, and the exact choice of metrics which429

should be used to best constrain a particular projection is not trivial matter.430

With this in mind, we propose that future studies should further investi-431

gate how selection of physically relevant variables and domains should be used432

to optimally weight projections of future climate change- and that individual433

projections will need careful consideration of relevant processes in order to for-434

mulate such metrics. Confidence in such weighting approaches is highest if there435

are well understood underlying processes that explain why the chosen metric436

constrains the projection. Until then, we have presented a provisional and con-437

servative framework which allows for a comprehensive assessment of model skill438

and uniqueness from the output of a multimodel archive when constructing439

combined projections from that archive. In so doing, we come to the reassuring440
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conclusion that for this particular application (i.e., domain and variables) the441

results which would be inferred from treating each member of the CMIP5 as442

an independent realization of a possible future are not significantly altered by443

our weighting approach. However, by establishing a framework, we make the444

first tentative steps away from simple model democracy in a climate projection445

assessment, leaving behind a strategy which is not robust to highly unphysical446

or highly replicated models of our future climate.447

7 Code availability448

Complete MATLAB code for the analysis conducted in this manuscript is pro-449

vided. All CMIP5 data used in this analysis is downloadable from the Earth450

System Grid (https://pcmdi.llnl.gov/projects/esgf-llnl/).451
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